

D7.2 1st Version of the Optimised Energy Performance Management Suite

DISCLAIMER

The information and views set out in this deliverable are those of the authors and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein.

Big Energy Data Value Creation within SYNergetic enERGY-as-a-service Applications through trusted multi party data sharing over an AI big data analytics marketplace

Deliverable nº:	D7.2
Deliverable name:	1 st Version of the Optimised Energy Performance Management Suite
Version:	0.1
Release date:	31/10/2021
Dissemination level:	Public
Status:	Final version
Author:	VTT, ETRA, CIRCE, VERD, CAV

Document history:

Version	Date of issue	Content and changes	Edited by
0.1	23/06/2021	ТоС	VTT
0.2	0.2 14/07/2021 Updated TOC with guidance		VTT
0.3 1/09/2021 The structure is updated after the WP7		WPLs (WP5-WP7)	
0.4 15/09/2021 1 st contributions on Al filled		1 st contributions on APPs features are filled	VTT, ETRA, CIRCE, VERD
0.5 30/09/2021 1 st complete draft for all APPS is produc		1 st complete draft for all APPS is produced	VTT, ETRA, CIRCE, VERD, CAV
0.6 16/10/2021		Enhanced descriptions for APPs are provided by partners	VTT, ETRA, CIRCE, VERD, CAV
0.6	0.6 23/10/2021 Integrated draft is submitted for the internal review		VTT
0.7 29/10/2021 Final report ready, comments addressed V		VTT, ETRA, CIRCE, VERD	

Peer reviewed by:

Partner	Reviewer
FVH	Timo Ruohomäki
UBITECH	Dimitris Miltiadou, Konstantinos Perakis

Deliverable beneficiaries:

WP / Task

WP7 / Tasks 7.1, 7.2, 7.3, 7.4

Table of contents

Ex	ecutive	summary	8
1	Introduction9		
	1.1	Purpose of the document	9
	1.2	Scope of the document	9
	1.3	Structure of the document	9
2	The ad	Ivanced Renovation Support application	11
	2.1	Overview	11
	2.2	Implemented functionalities	11
	2.3	Technology stack and implementation tools	15
	2.4	API documentation	16
	2.5	Installation instructions	18
	2.6	Assumptions and restrictions	19
	2.7	Licensing and access	19
	2.8	Planned features for next release	19
	2.9	Integration Plan	19
3	Urban	Energy Monitoring and Planning Support Application	20
	3.1	Overview	20
	3.2	Implemented functionalities	20
	3.3	Technology stack and implementation tools	24
	3.4	API documentation	24
	3.5	Installation instructions	25
	3.6	Assumptions and restrictions	25
	3.7	Licensing and access	25
	3.8	Planned features for next release	26
	3.9	Integration Plan	26
4		y Management Energy Analytics Self-Consumption Optimization	& Predictive
Ма	intenan	ce Application	27
	4.1	Overview	27
	4.2	Implemented functionalities	28
		4.2.1 Application user interface	32
	4.3	Technology stack and implementation tools	42
		4.3.1 The Facility Management Monitoring Engine	42
		4.3.2 The HVAC Predictive Maintenance Service (HVAC-PMS)	45

5

	4.3.3 The Building-Level Energy Performance Optimisation Manager EPOM) and The District-level Energy Performance Optimisation Manager (DL EDOM)	n
4 4	Manager (DL-EPOM) API documentation	45
4.4		46
	4.4.1 The Facility Management Monitoring Engine	46
	4.4.2 The HVAC Predictive Maintenance Service (HVAC-PMS)	47 (D)
	4.4.3 The Building-Level Energy Performance Optimisation Manager EPOM) and The District-level Energy Performance Optimisation Manager (DL-EPOM)	
4.5	Installation instructions	49
	4.5.1 The Facility Management Monitoring Engine	49
	4.5.2 The HVAC Predictive Maintenance Service (HVAC-PMS)	49
	4.5.3 The Building-Level Energy Performance Optimisation Manager EPOM) and The District-level Energy Performance Optimisation	(BL- า
	Manager (DL-EPOM)	49
4.6		49
	4.6.1 The Facility Management Monitoring Engine	49
	4.6.2 The HVAC Predictive Maintenance Service (HVAC-PMS)	51
	4.6.3 The Building-Level Energy Performance Optimisation Manager EPOM) and The District-level Energy Performance Optimisation Manager (DL-EPOM)	
4.7		51
ч./	4.7.1 The Facility Management Monitoring Engine	51
	4.7.2 The HVAC Predictive Maintenance Service (HVAC-PMS)	52
	4.7.3 The Building-Level Energy Performance Optimisation Manager EPOM) and The District-level Energy Performance Optimisation	(BL-
	Manager (DL-EPOM)	52
4.8	Planned features for next release	52
	4.8.1 The Facility Management Monitoring Engine	52
	4.8.2 The HVAC Predictive Maintenance Service (HVAC-PMS)	53
	4.8.3 The Building-Level Energy Performance Optimisation Manager EPOM) and The District-level Energy Performance Optimisation	า
4.0	Manager (DL-EPOM)	53
4.9	5	53
Real	Time Building Energy Performance and Smart Readiness Specificati	on 54
5.1	Overview	54
5.2	Implemented functionalities	54
	5.2.1 Smart Readiness Indicator	55
	5.2.2 Enhanced Display Energy Certificates	58
5.3		59
5.4	API documentation	59
***	This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 872734.	Page 3

7	Refere	nces	64
6	Conclu	isions	62
	5.9	Integration Plan	60
	5.8	Planned features for next release	60
	5.7	Licensing and access	60
	5.6	Assumptions and restrictions	60
	5.5	Installation instructions	60

Abbreviations and Acronyms

Acronym	Description	
AI	Artificial Intelligence	
AI-RDSS	AI- Renovation Decision Supporting Service	
BSC	Balancing and Settlement Code	
BACS	Building Automation and Control System	
BST	British Summer Time	
СА	Consortium Agreement	
DD	Degree Days	
DoA	Description of Action (annex I of the Grant Agreement)	
EC	European Commission	
eDEC	Enhanced Display Energy Certificate	
EPBD	Energy Performance of Buildings Directive	
EV	Electric Vehicles	
FMME	Facility Management Monitoring Engine	
GA	Grant Agreement	
GMB	Group Model Building	
GML	Geography Markup Language	
GMT	Greenwich Mean Time	
нн	Half-hourly	
HVAC	Heating, ventilation, and air conditioning	
HVAC-PMS	HVAC Predictive Maintenance Service	
IDA-ICE- RAS and IDA-ICE based Renovation Analysis Service		

Acronym	Description	
JSON	JavaScript Object Notation	
КРІ	Key Performance Indicator	
LF	Load Factor	
LSTM	Long Short Term Memory	
MD	Maximum Demand	
MQTT	Message Queuing Telemetry Transport	
NRCMV	Near Real-time City Monitoring and Visualization service	
oBIX	Open Building Information Xchange	
РС	Project Coordinator	
РМВ	Project Management Board	
РО	Project Officer	
QM	Quality Management	
SD	System Dynamics	
SRI	Smart Readiness Index	
SSO	Single sign-on	
SUPS	Strategic Urban Planning Supporter	
тс	Technical Coordinator	
TL	Task Leader	
ТоС	Table of Contents	
GUI	Graphical User Interface	
UML	Unified Modelling Language	
WP	Work Package	

Acronym	Description	
WPL	Work Package Leader	

Executive summary

The current deliverable D7.2 "1st Version of the Optimized Energy Performance Management Suite" reports the first development results of Tasks 7.1, 7.2, 7.3 and 7.4, each one in charge of the design and development of the applications composing the energy applications suite which will be delivered by WP7. The purpose of this deliverable is to detail the status of the 1st release of the developed functionalities. Developments are built on the use cases and requirements analysis, and the specifications defined in erarlier WP7 deliverable D7.1. The energy applications emerging from WP7 are:

- Advanced Renovation Support App, which aims at supporting users (Facility managers, Building owners, ESCOs) in the design and selection of most appropriate building renovation actions.
- Urban Energy Monitoring and Planning Support App, which aims at supporting users (Urban planners, Municipalities' decision makers) to monitor near real-time energy performance of buildings and to identify any potential weaknesses in the performance. Combined with the simulation environment, this application will allow to design effective alternative urban transformation strategies towards urban sustainability defined in SECAP plans.
- Self-Consumption Optimization & Predictive Maintenance App, which aims at supporting users (Facility managers) to optimize the operation and energy management of large facilities and building complexes.
- Real-time Building Energy Performance and Smart Readiness Certification App, which aims at supporting users (Aggregators, Retailers, Facility owners) with tools to assist in the continuous assessment and certification of real-time dynamic assessment of energy performance of buildings.

The detailed development report, presented in this document, defines the development status of functional features, user interfaces and deployment technology stack of each application and their respective APIs and necessary licences related information, in great details. Furthermore, the integration of WP7 energy management applications with the SYNERGY platform developed in WP3 and WP4 is addressed.

The current report is the first of two development deliverables to be delivered by WP7, and it specifies the implementation status of all four applications. Follow-up deliverable, D7.3 (due on M42), will report the details of final implementation of all four WP7 applications, though the intermediate releases of all applications are planned in the meantime, e.g. on M24.

1 Introduction

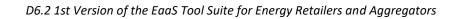
1.1 Purpose of the document

This deliverable reports in details the development work performed and the 1st release of the SYNERGY Building/ District-level Analytics for Optimized Energy Performance Management suite. The suite includes components for Advanced Renovation support, Urban Energy Monitoring and Planning Support, Facility Management Energy Analytics, Self-Consumption Optimization & Predictive Maintenance, and Real-time Building Energy Performance and Smart Readiness Certification applications, which have resulted from the specification work of tasks T7.1, T7.2, T7.3 and T7.4, respectively.

The objectives of the energy applications are as follows:

- To deliver highly innovative renovation decision support tools to building facilities managers, building owners and ESCOs for safeguarding the payback of Energy Performance Contracts applied during renovation projects;
- To support urban monitoring and planning operations of city authorities through real-time urban energy performance monitoring & assessment and planning of targeted interventions that can evidently satisfy energy efficiency objectives set in the SECAP plans;
- To equip facility managers and ESCOs, with real-time energy performance analytics towards optimizing energy management, maximizing self-consumption and optimizing predictive maintenance of building assets;
- To reinforce the business offering of ESCOs through a first-of-a-kind application for real-time energy performance and smart readiness certification of buildings.

This report sets the ground for the upcoming development activities of WP7 towards iterative implementation of Optimized Energy Performance Management Suite as well as the interaction with the SYNERGY platform (which is developed in the context of WP3 and WP4), which will be validated during the project demonstration phase carried out in WP8.


1.2 Scope of the document

This deliverable provides the detailed report on the first developments of Energy Performance Management applications and their respective components, accomplished till (M22) within the scope of WP7 tasks T7.1 -T7.4. Apart from the features provided by applications, the report includes information on APIs, technology stack and software libraries and also plans for the next releases of all applications.

1.3 Structure of the document

This document is structured as follows.

- Chapters 2-5 provide the details of the development of all energy applications in WP7. The
 development details of each energy application are described by reporting the technical
 features that have been implemented (supported by respective screenshots), the technology
 stack and libraries which are used to develop and deploy respective applications in the
 concrete business contexts, the APIs, the installation instructions as well as the plans for future
 software releases and integration with the SYNERGY platform.
- Chapter 6 concludes this document by highlighting main discussion points of the report as well as outlining the aspects of future work.

2 The advanced Renovation Support application

2.1 Overview

The advanced Renovation Support application aims at supporting users (Facility managers, Building owners, ESCOs) in the design and selection of most appropriate building renovation actions. This will be achieved by leveraging the real-time data coming from the actual operation of the building combined with occupants' behavior- and comfort profiles into iterative analytics and simulation loops to propose alternative renovation scenarios of selected buildings. This will help respective users to enhance generic routines currently used in similar commercial products, which are based on predicted energy performance of a building. The Advanced Renovation Support App includes the following components.

- AI boosted Renovation Decision Supporting Service (AI-RDSS)
- IDA-ICE based Renovation Analysis Service (IDA-ICE-RAS)

2.2 Implemented functionalities

The status of implemented features is shown in the following table.

Feature	Status	Notes	
AI- RDSS_1	Partially implemented	The very first standalone version of the GUI has been implemented (allows to input the renovation targets, building related information, renovation actions to be studied).	
AI- RDSS_2	Partially implemented	The very first standalone version of the machine learning based building energy consumption model (digital twin) has been implemented, but it cannot be fully tested without the SYNERGY platform data (basic information of the building, building energy consumption data, local weather data).	
AI- RDSS_3	Implemented	Implementation of the calculation feature is ready but related APIs are not fully tested with data.	
AI- RDSS_4	Partially implemented	Implementation of the pre-selection of the most potentia renovation action such as envelope insulation and air conditio systems, has been started.	
AI- RDSS_5	Partially implemented	The data storage & ML algorithms are implemented. The AI-RDSS module leverages background information of the pilot buildings and related energy consumption. At this point, some demo/test data (stored in local database) has been used for testing.	

Feature	Status	Notes
AI- RDSS_6 (optional)	Partially implemented	This is an optional feature which will be implemented if related data (country specific information such as investment costs, installation and energy costs and related carbon footprints) will be available e.g. provided by partners.
IDA-ICE- RAS_1	Partially implemented	Detailed level modelling can be started when AI-RDSS related analyses are done.
IDA-ICE- RAS_2	Partially implemented	Detailed level calculating of pre-selected renovation actions can be started when AI-RDSS related analyses are done.
IDA-ICE- RAS_3	Partially implemented	Prioritisation of calculated renovation actions can be started when IDA-ICE-RAS_2 has been done.

Hardcopies of standalone version of application related GUI are shown in Figure 1 - Figure 6. This standalone Windows application based GUI will be replaced in the next release with web browser based GUI.

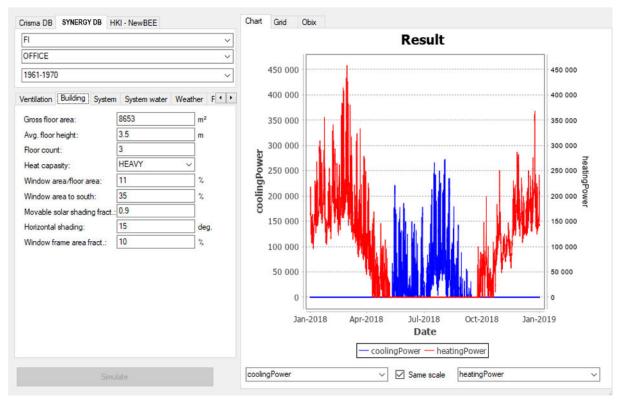


Figure 1: The main menu.

The objective is to read building specific values from SYNRGY platform (related JSON file) and check/change related values using next dialogs if needed.

Group Ventilation Building	System System water	We	Group Ver	tilation Build	ling System	System w	ater We 🔸 🕨
Gross floor area: Avg. floor height: Floor count: Heat capasity:	2000 3.2 5 MEDIUM ~	m² m	Air change Air tightnes Heat recov Ventil. pre	s n50:	0.5 2 0 -9999		1∕h 1∕h % ℃
Window area/floor area: Window area to south: Movable solar shading fract.: Horizontal shading: Window frame area fract.:	12 35 0.9 15 10	% % deg. %	Shedule Workdays Saturday Sunday	Begi 0 • 0 • 0 •	En 24 🜩 24 🜩 24 🜩	On 1 1 1 1 1	Other time 0 0 0

Figure 2: Selecting the existing building parameters – building and ventilation parameters.

Group Ventilation Building	g System System water	We	Group V	entilation	Building	System	System v	vater We · ·
Number Of Residents:	40		Total Wate	er Consum.	: 150			l/day/person
Number Of Dwellings:	29		Shedule	Begi	En		On	Other
Space Heating System:	Old district heating, space I	heating ~						time
Auxiliary Space Heat. Syst.:	No auxiliary space heating	system 🗸	Workdays	0	24	-	1	0
Space Cooling System:	No mechanical cooling	~	Saturday	0	24	-	1	0
Household Electricity Syst .:	Household electricity system	m ~	Sunday	0	24	-	1	0
Share Of Hot Water:	40	%						
Cold Water Temp.:	7	°C						
Hot Water Temp.:	57	°C						
Hot Water Production Syst.	Old district heating, hot wat	ter heat 🗸						
Auxiliary Hot Water Syst.:	No auxiliary hot water heati	ng syst 🗸						
Hot Water Losses:	10	kWh/m²,a						
Hot Water Losses to gains:	60	%						
			-					

Figure 3: Selecting the existing building parameters – heating, cooling and water system parameters.

Wether Date Course Wether Fd	Sustan water Westher Pewer Internal heat gains Pull ()	Ditter and the
Ventilation Building System System water Weather F • • Country: FI Organisation: Finnish Meterology Institute (FMI) Weather station: Alajärvi Möksy (101533) Show only weather stations with solar radiation Set temperature: -20 C Use weather file: Suomi_Helsinki_1979 tm2	Predefined internal heat gains:	Power Internal heat gains Building properties -eastWindowProperties ^ -curtainFactor 0.7 -frameFactor 0.9 -frameFactor 0.9 - -mortontalShading 15 - -gValue 0.7 - -area 31.7647058823529 -u_value 1.8 -floorProperties -area 400 -u_value 0.2 -northWindowProperties -curtainFactor 0.7
From: maanantai 16. marraskuuta V To: maanantai 23. marraskuuta V	Saturday 0 24 0 0 Sunday 0 24 24 0 0	- frameFactor 0.9 - horizontalShading 15 - gValue 0.7 - area 92.4705882352941 - u_value 1.8 - outsideWallsProperties - area 1210.66666666667 - u_value 0.28 - roofProperties - area 400 - u_value 0.22 - southWindowProperties

Figure 4: Selecting the existing building parameters – internal heat gains and weather data.

An example of some AI-RDSS simulation engine related outputs is shown in figure below.

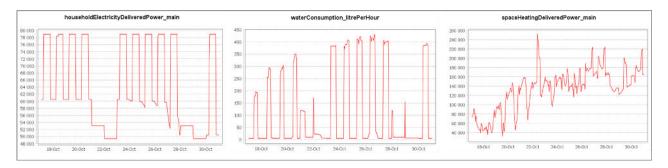


Figure 5: Example of simulation engine outputs.

	Space hea water	ating and hot	Appliance	e electricity	Space co	oling	Carbon f	ootprint	Energy cost	Investment	Payback time
CASE 1	kWh/a	kWh/m2,a	kWh/a	kWh/m2,a	kWh/a	kWh/m2,a	tCO2/a	kgCO2/m2,a	€/a	€	a(year)
Before	99894	50	89575	45	14329	7	70	0.04	23355	-	-
After	88912	44	89575	45	16692	8	67	0.03	22853	212784	423.9
Savings	10982	6	0	0	-2363	-1	3	0	502	-	
	Space her water	ating and hot	Applianc	e electricity	Space co	oling	Carbon f	ootprint	Energy cost	Investment	Payback time
CASE 2	kWh/a	kWh/m2,a	kWh/a	kWh/m2,a	kWh/a	kWh/m2,a	tCO2/a	kgCO2/m2,a	€/a	e	a(year)
Before	99894	50	89575	45	14329	7	70	0.04	23355	-	-

	Space heat water	ing and hot	Appliance	e electricity	Space coo	oling	Carbon fo	otprint	Energy cost	Investment	Payback time
CASE 2	kWh/a	kWh/m2,a	kWh/a	kWh/m2,a	kWh/a	kWh/m2,a	tCO2/a	kgCO2/m2,a	€/a	€	a(year)
Before	99894	50	89575	45	14329	7	70	0.04	23355	-	-
After	88912	44	89575	45	16692	8	67	0.03	22853	212784	423.9
Savings	10982	6	0	0	-2363	-1	3	0	502	-	-

...

	Space heat water	ing and hot	Applianc	e electricity	Space coo	oling	Carbon fo	otprint	Energy cost	Investment	Payback time
CASE N	kWh/a	kWh/m2,a	kWh/a	kWh/m2,a	kWh/a	kWh/m2,a	tCO2/a	kgCO2/m2,a	€/a	e	a(year)
Before	99894	50	89575	45	14329	7	70	0.04	23355	-	-
After	88912	44	89575	45	16692	8	67	0.03	22853	212784	423.9
Savings	10982	6	0	0	-2363	-1	3	0	502	-	-

Figure 6: Results of studied renovation actions.

2.3 Technology stack and implementation tools

The related technology stacks and related version numbers and licenses are shown in the table below. *Table 2. The related technology, version numbers and licenses.*

Library	Version	License
Apache Tomcat [®] for Java Servlet	9.0.53	Apache 2.0 (<u>https://www.apache.org/licenses/LICENSE-2.0</u>)
PostgreSQL	14 RC 1	PostgreSQL is released under the PostgreSQL License, a liberal Open Source license, similar to the BSD or MIT licenses.
NodeJS	14.17.6	Node.js uses a permissive MIT license for the main library.

Library	Version	License
Deeplearning4j	1.0.0- M1.1	These libraries are completely open-source, Apache 2.0 under open governance at the Eclipse foundation. (<u>https://deeplearning4j.konduit.ai/</u>

2.4 API documentation

The GUI has been integrated with the application backend using the tool engine REST JSON APIs as presented in the table below.

Table 3. The internal application APIs.

Engine API Ty description	Гуре	Implementer	Purpose
POST building H	ITTP POST	Backend	 Basic information of renovated building as json file Building basic information: Building name, Street Address, City, Country, Building location (latitude, longitude), Building type, Building Year, Building volume (m3), Building height (m), Conditioned floor area (m²), Number of floors, Floor height (m), Number of residents (-), Cooling set point (°C), Heating set point (°C), Space heating type, Heating type auxiliary, Space cooling type, Household electricity type Window information: Windows total area (m²), Windows U-value (W/m²K), Windows g-value (-), Windows shadings (-), Share of window area to south Building envelope properties: Outside walls (Area m², U-Value W/m²K), Roof (Area m², U-Value W/m²K), Floor (Area m², U-Value W/m²K) Ventilation and infiltration: Air change (1/h, optionally also hourly schedules for days of the week), Heat recovery efficiency (-), Air leakage rate n50 Pa (1/h) User profiles and internal gains: Occupants (W/m², optionally also hourly schedules for days of the week), Appliances (W/m², optionally also hourly schedules for days of the week), Appliances for days of the week) Hot water system: Total water consumption (I/person,day), Share of hot water (-), Hot water temperature (°C), Cold water temperature (°C), Hot water temperature (°C), Cold water temperature (°C), Hot water heating type auxiliary

Engine API description	Туре	Implementer	Purpose
Post building heating energy consumption	HTTP POST	Backend	Aggregated history data of building hourly heating energy consumption
Post building cooling energy consumption	HTTP POST	Backend	Aggregated history data of building hourly cooling energy consumption
Post building electricity consumption	HTTP POST	Backend	Aggregated history data of building electricity consumption
Post local outdoor air temperature	HTTP POST	Backend	Local weather data (at least one-year hourly history data of outdoor air temperature)
Post local outdoor air relative humidity	HTTP POST	Backend	Local weather data (at least one-year hourly history data of outdoor air relative humidity)
Post diffuse solar radiation	HTTP POST	Backend	Weather data (at least one-year hourly history data of diffuse solar radiation)
Post direct solar radiation	HTTP POST	Backend	Weather data (at least one-year hourly history data of direct solar radiation)

The status of required SYNERGY Platform APIs for AI-RDSS functionalities are shown in the table below.

Table 4. The status of required SYNERGY Platform	APIs for module functionalities.
--	----------------------------------

Data Retrieval Query	Туре	Implementer	Purpose
Get building basic info	HTTP GET	SYNERGY Platform	Basic information of renovated building as json file •Building basic information: Building name, Street Address, City, Country, Building location (latitude, longitude), Building type, Building Year, Building volume (m3), Building height (m), Conditioned floor area (m ²), Number of floors, Floor height (m), Number of residents (-), Cooling set point (°C), Heating set point (°C), Space heating type, Heating type auxiliary, Space cooling type, Household electricity type •Window information: Windows total area (m ²), Windows U-value (W/m ² K), Windows g-value (-), Windows shadings (-), Share of window area to south •Building envelope properties: Outside walls (Area m ² , U- Value W/m ² K), Roof (Area m ² , U-Value W/m ² K), Floor (Area m ² , U-Value W/m ² K)

Data Retrieval Query	Туре	Implementer	Purpose
			 Ventilation and infiltration: Air change (1/h, optionally also hourly schedules for days of the week), Heat recovery efficiency (-), Air leakage rate n50 Pa (1/h) User profiles and internal gains: Occupants (W/m², optionally also hourly schedules for days of the week), Appliances (W/m², optionally also hourly schedules for days of the week), Lighting (W/m², optionally also hourly schedules for days of the week). Hot water system: Total water consumption (I/person,day), Share of hot water (-), Hot water temperature (°C), Cold water temperature (°C), Hot water heating type main, Hot water heating type auxiliary
Get building heating energy consumption	HTTP GET	SYNERGY Platform	Aggregated history data of building hourly heating energy consumption
Get building cooling energy consumption	HTTP GET	SYNERGY Platform	Aggregated history data of building hourly cooling energy consumption
Get building electricity consumption	HTTP GET	SYNERGY Platform	Aggregated history data of building electricity consumption
Get local outdoor air temperature	HTTP GET	SYNERGY Platform	Local weather data (at least one-year hourly history data of outdoor air temperature)
Get local outdoor air relative humidity	HTTP GET	SYNERGY Platform	Local weather data (at least one-year hourly history data of outdoor air relative humidity)
Get diffuse solar radiation	HTTP GET	SYNERGY Platform	Weather data (at least one-year hourly history data of diffuse solar radiation)
Get direct solar radiation	HTTP GET	SYNERGY Platform	Weather data (at least one-year hourly history data of direct solar radiation)

2.5 Installation instructions

Current version of the GUI is a standalone Windows application and needs to be installed on Windows computer using its setup package (not yet available from private repository). This standalone Windows application based GUI will be replaced with web browser based GUI (in the upcoming release) and after that no installation will be required. In addition, the tool calculation engine has REST JSON API and can be used via related API without any installation.

2.6 Assumptions and restrictions

The application relies on the data (basic information of the building, weather data, building energy consumption data) provided by the SYNERGY Platform. In addition, the users are required to be registered as users of the SYNERGY Platform and they should be able to do the necessary data check-in jobs, in order the required datasets to be accessible through the SYNERGY platform.

2.7 Licensing and access

VTT is the owner of all intellectual property rights of AI-RDSS module. All rights are reserved. The licensing can be granted according to the SYNERGY license agreement.

The demo of this application is available at¹: <u>https://renovationsupport.synergy-bigdata.eu</u>

2.8 Planned features for next release

It's planned that for the next release by M24, the focus will be put on the finalization of GUI, calculation and prioritization of renovation actions and ML algorithms for learning the studied building model (AI-RDSS _1-3, AI-RDSS _5). This will allow the start of the testing and validation of the application as a part of the WP8 activities.

The results of the testing and validation activities will be used to improve application functions towards M33, when the second phase of demonstration and validation will be started. During the period of M24-M33, the ML algorithms will be also improved by utilising and testing the algorithm with various real datasets (AI-RDSS _4). More deep study of the renovation actions will be performed (IDA-ICE_1-3). The final version of the application is to be released by M42.

2.9 Integration Plan

The data access and data sharing with SYNERGY platform is tested with test data. The application will be integrated with the platform when related data are made available through the SYNERGY platform APIs. The application will be integrated with baseline analytics developed in WP4, such as e.g. comfort profiling, when they will be made available on the SYNERGY platform.

¹ Demo credentials are available on request

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 872734.

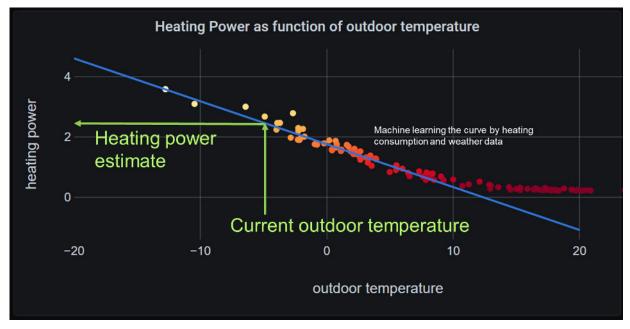
3 Urban Energy Monitoring and Planning Support Application

3.1 Overview

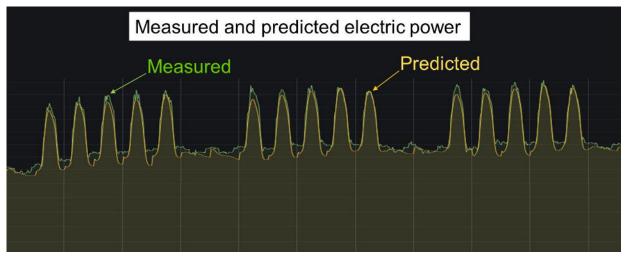
The Urban Energy Monitoring and Planning Support application aims to monitor and visualise near real-time energy performance of buildings (public and commercial) with the objective to identify weak energy performance areas. Combined with the simulation environment, this application will allow end users such as Urban planners, Municipalities' decision makers to design effective alternative urban transformation strategies towards the realization of short-term and mid-term objectives for energy efficiency and urban sustainability to meet SECAP targets. The Urban Energy Monitoring and Planning Support includes the following two components.

- Near Real-time City Monitoring and Visualization service (NRCMV)
- Strategic Urban Planning Supporter (SUPS)

3.2 Implemented functionalities


The status of implemented functionalities is shown in the following Table.

Feature	Status	Notes			
NRCVM_1	Partially implemented	Data access and data sharing with SYNERGY platform is tested with test data but not with NRCVM input data because the specific data is not yet available via SYNERGY platform.			
NRCVM_2	Partially implemented	First version of ML boosted model for district energy demand estimates is implemented by using non-SYNERGY test energy data and will be fully implemented when needed hourly district energy data is available via SYNERGY platform APIs.			
NRCVM_3	Partially implemented	Implementation of building heating demand related simulation model is ready and the scaling of these models to district level model already started.			
NRCVM_4	Partially implemented	Most new indicators for SUPS component are defined and the draft integration concept between KPI calculation and SUPS component is ready.			
SUPS_1	Partially implemented	Initial version of qualitatively models for specific strategic electrification use cases and scenarios has been completed.			
SUPS_2	Partially implemented	Initial version of system dynamics models for simulating quantitatively alternative energy electrification scenarios for urban area has been completed (e.g. PV technology & EV integration).			


Table 5. The status of implemented functionalities.

The visualizations for studied area related to heating demand estimates and the results of machine learning model for studied area related to heating power estimate are shown in the Figure 7 and Figure 8 respectively.

Figure 7: An example of a simple machine learning model for studied area related to heating power estimate.

Figure 8: An example of ANN model based electric power estimate for the area.

Area electricity demand related scenarios are complemented by SUPS module, using area NRCVM_4 indicator values (area electricity production and demand and related carbon footprint) as a starting point.

Figure 9 shows an initial simulation model that seeks to explain are energy indicators as a function of area energy production and demand, specifically PV installations and EV use. Furthermore, the causal theories for both PV installations and EV adoption processes feature non-linear drivers and various potential bottlenecks. Key input points for entering data about the system state and tested policy

interventions are marked in blue. Key indicators used for comparing the chosen interventions and assumptions are marked in green. Crucially, the models structure is flexible to accommodate the specific conditions and needs of the user of simulation knowledge. Use of empirical data is likewise possible to validate the starting values or even causal effects of any given variable.

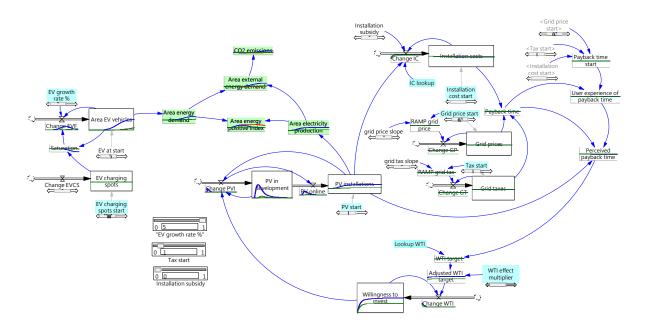


Figure 9: A SUPS simulation model.

As an example, Figure 10 shows change in the Energy Positive Index and the Energy Demand in the studied area under three sets of assumptions. The baseline run is in green, featuring modest EV growth and no particular promotion of PV installations. PV installations grow somewhat due to the assumed reinforcing effects (such as declining installation costs and increased user awareness as PV is normalized). After a slight increase in the Area Energy Positive Index the increase in EVs leads to a downturn as electricity demand increases. The red curve demonstrates the potential effect of making the PV installation bureaucracy easier. This test is operationalized in the model as more households wishing to install PV per given payback time (parameter 'WTI effect multiplier'). Though EV adoptions bring the Area Energy Positive Index down again, the initial burst of PV installations is stronger leading to a clearly higher Index at all times. Finally, the blue curve takes the prior assumptions but assumes a far faster EV adoption rate. Initial trajectory is similar to the red curve, but the downturn in energy positivity happens sooner and more steeply.

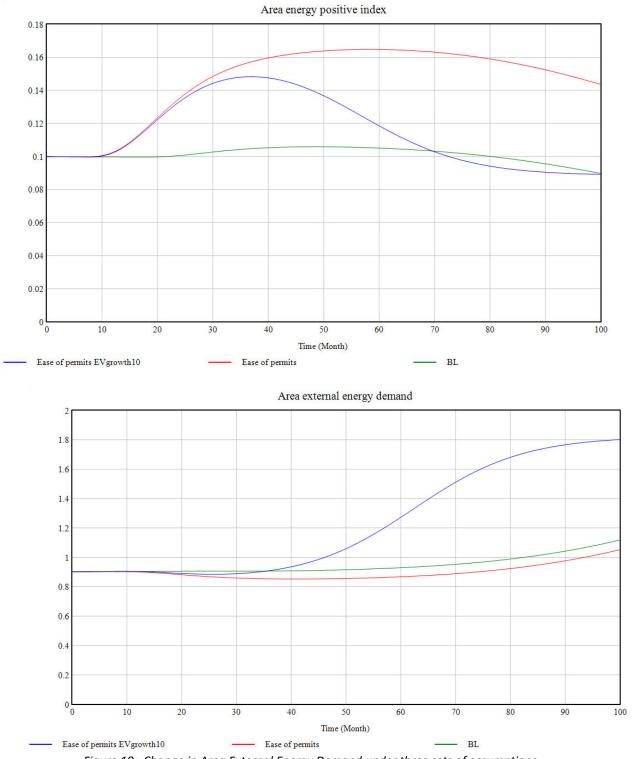


Figure 10: Change in Area External Energy Demand under three sets of assumptions.

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 872734.

Page 23

3.3 Technology stack and implementation tools

The technology stack, related version numbers and licenses are shown in the following table.

Table 6. The technology stack and licenses.

Library	Version	License
Apache Tomcat [®] for Java Servlet	9.0.53	Apache 2.0 (<u>https://www.apache.org/licenses/LICENSE-2.0</u>)
PostgreSQL	14 RC 1	PostgreSQL is released under the PostgreSQL License, a liberal Open Source license, similar to the BSD or MIT licenses.
Deeplearning4j	1.0.0- M1.1	These libraries are completely open-source, Apache 2.0 under open governance at the Eclipse foundation. (<u>https://deeplearning4j.konduit.ai/</u>
Vensim	9.0	Vensim Free Research License, https://vensim.com/license/

3.4 API documentation

The application related SYNERGY Platform data retrieval queries are show in the following table.

Data Retrieval	Туре	Implementer	Purpose
Query			
Aggregated heating	HTTP	SYNERGY	Aggregated history data of area (e.g. district) hourly
energy consumption	GET	Platform	heating energy consumption
Aggregated cooling	HTTP	SYNERGY	Aggregated history data of area (e.g. district) hourly
energy consumption	GET	Platform	cooling energy consumption
Aggregated	HTTP	SYNERGY	Aggregated history data of area (e.g. district)
electricity	GET	Platform	electricity consumption
consumption			
Aggregated heating	HTTP	SYNERGY	Aggregated history data of area (e.g. district) hourly
energy production	GET	Platform	heating energy production
Aggregated cooling	HTTP	SYNERGY	Aggregated history data of area (e.g. district) hourly
energy production	GET	Platform	cooling energy production
Aggregated	HTTP	SYNERGY	Aggregated history data of area (e.g. district) hourly
electricity	GET	Platform	electricity generation
generation			
Building eating	HTTP	SYNERGY	History data of area related building hourly heating
energy consumption	GET	Platform	energy consumption (optional)

Data Retrieval	Туре	Implementer	Purpose				
Query							
Building cooling	HTTP	SYNERGY	History data of area related building hourly cooling				
energy consumption	GET	Platform	energy consumption (optional)				
Building electricity	HTTP	SYNERGY	History data of area related building hourly				
consumption	GET	Platform	electricity consumption (optional)				
Basic information of	HTTP	SYNERGY	Basic information of building types in the area (e.g. buildingType1: building type = apartment building,				
building types	GET	Platform					
			construction year = 1985, gross floor area = 2000				
			m2)				
Number of different	HTTP	SYNERGY	Number of different types of buildings in the area				
types of buildings in	GET	Platform					
the area							
Get number of	HTTP	SYNERGY	Number of people living in the area				
people in the area	GET	Platform					

3.5 Installation instructions

The web browser based monitoring of NRCVM results does not required any installation. For this first release the Vensim should be downloaded to investigate and use SUPS models.

3.6 Assumptions and restrictions

The application relies on the data provided by the SYNERGY Platform. In addition, the users are required to be registered as users of the SYNERGY Platform and they should be able to do necessary data check-in jobs, so required datasets get accessible through the platform.

3.7 Licensing and access

VTT is the owner of all intellectual property rights of NRCVM. All rights are reserved. The licensing can be granted according SYNERGY license agreement.

A demo version of the application is accessible at²: <u>https://urbanplanningsupport.synergy-bigdata.eu</u>

² Demo credentials are available on request

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 872734.

3.8 Planned features for next release

It's planned that for the next release by M24, the focus will be put on the integration of near-real time data at the city district level to test and improve the analytics features (NRCMV_3-4) and on the improving of SUPS models (SUPS_1-2). This will allow the start of the testing and validation of the application as a part of the WP8 activities.

The results of the testing and validation activities will be used to improve application functions towards M33, when the second phase of demonstration and validation will be started. During the period of M24-M33, the ML algorithms will be also improved by utilising and testing algorithm with various real datasets. The final version of application is to be released by M42.

3.9 Integration Plan

The data access and data sharing with SYNERGY platform is tested with test data. The application will be integrated with the platform when related data will be made available on the SYNERGY platform APIs. The application will be integrated with baseline analytics such as energy demand/consumption forecast, when they will be made available on the SYNERGY platform.

4 Facility Management Energy Analytics Self-Consumption Optimization & Predictive Maintenance Application

4.1 Overview

The objective of the Facility Management Energy Analytics, Self-Consumption Optimization & Predictive Maintenance toolbox is to provide Energy Managers, Facility Mangers, Facility Owners and ESCOs a bundle of additional analytics and services for optimizing the operation and energy management of large facilities and buildings complexes (or group of buildings). This objective will be covered by the development of 4 tools/modules:

- Facility Management Monitoring Engine (FMME) will provide in-depth and comprehensive knowledge of the energy behaviour of their calculating and displaying metrics and KPIs. Therefore, the user will measure and visualize the impact on the relevant KPIs of the optimizations made by other components of the toolbox.
- HVAC Predictive Maintenance Service (HVAC-PMS) will support building managers in predictive maintenance tasks of high energy HVAC.
- Building-Level Energy Performance Optimisation Manager and District-Level Energy Performance Optimisation Manager (BL-EPOM and DL-EPOM) modules will support facility managers, in presence of flexible devices and systems, to design appropriate flexibility control strategies to maximize self-consumption and reduce energy costs for independent buildings and groups of buildings.

The architecture of the Facility Management Energy Analytics, Self-Consumption Optimization & Predictive Maintenance toolbox is represented in Figure 11. The image also incorporates the "eDECs Calculation Engine" and the "SRI Calculation Engine" under development in task 7.4 but to be integrated in the same user interface as the FMME, the BL-EPOM and the DL-EPOM.

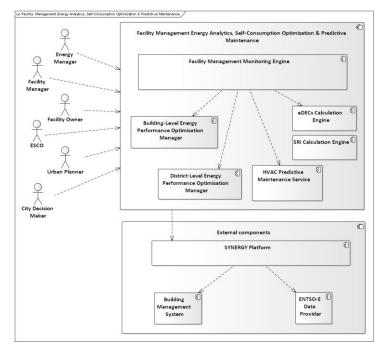


Figure 11: Facility Management Energy Analytics, Self-Consumption Optimization & Predictive Maintenance toolbox, component diagram.

4.2 Implemented functionalities

The table below shows the implemented functionalities and the status of all modules developed:

- FMME_X for the Facility Management Monitoring Engine
- HVAC-PMS_X for the HVAC Predictive Maintenance Service
- BL-EPOM_X for the Building-Level Energy Performance Optimisation Manager
- DL-EPOM_X for the District-Level Energy Performance Optimisation Manager

Feature	Status	Notes
FMME_1	Implemented	Implementation has taken place using test data from two buildings. All data processing involved has been implemented as analytic workflows in the SYNERGY Platform
FMME_2	Implemented	Implementation has taken place using test data from two buildings. All data processing involved has been implemented as analytic workflows in the SYNERGY Platform

Table 8. The implemented features.

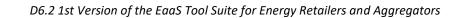
Feature	Status	Notes			
FMME_3	Partially Implemented	Evaluation and display of evolution of KPIs is implemented. Next release will include the tagging feature. All data processing involved has been implemented as analytic workflows in the SYNERGY Platform.			
FMME_4	Partially implemented	Current version calculates baselines for registered buildings. Next release will include the comparison of KPIs among different time periods feature. All data processing involved has been implemented as analytic workflows in the SYNERGY Platform.			
HVAC-PMS_1	Partially implemented	Continuous monitoring and history data collection (measurement values, controllers' set point values) from studied HVAC system(s) and related indoor environment conditions including building and HVAC system level energy consumption tested with test-data from buildings.			
HVAC-PMS_2	Implemented	Integrated analytics for monitoring the technical performance of AHU and Heating Network functionalities is implemented.			
HVAC-PMS_3	Implemented	First version of HVAC-PMS_2 with Digital Twin based malfunctions, inefficiencies and optimization possibilities detection has been done for building level heating/cooling energy systems and human thermal comfort based approach for space heating/cooling system.			
HVAC-PMS_4	Implemented	First version of neural network based malfunctions, inefficiencies and optimization possibilities detection has been done using an autoencoder-decoder model.			
HVAC-PMS_5	Implemented	First version of 3D BIM based digital twin for visualising malfunction has been implemented. SmartView visualisation functionalities are implemented			
BL-EPOM_1	Partially implemented	Calculation of solar PV usage The developed MILP optimization calculates the PV generation use and possible curtailments, but the results do not fully cover the objectives of			

Feature	Status	Notes
		the tools as the HVAC demand is not optimised in the previous steps
BL-EPOM_2	Partially	Calculation of batteries usage
	implemented	The developed MILP optimization calculates the batteries use (charge and discharge powers and expected SoC), but the results do not fully cover the objectives of the tools as the HVAC demand is not optimised in the previous steps
BL-EPOM_3	Partially	Calculation of EV batteries charge
	implemented	The developed MILP optimization calculates the EV batteries use (charge and discharge powers and expected SoC), but the results do not fully cover the objectives of the tools as the HVAC demand is not optimised in the previous steps
BL-EPOM_4	Partially implemented	Calculation of energy exchanges with the grid The developed MILP optimization calculates the energy exchanges with the grid, but the results do not fully cover the objectives of the tools as the HVAC demand is not optimised in the previous steps
BL-EPOM_5	Partially	Calculation of manageable demands use
	implemented	The developed MILP optimization calculates the manageable demands use for every building but the results do not fully cover the objectives of the tools as the HVAC demand is not optimised in the previous steps
DL-EPOM_1	Partially	Calculation of solar PV use
	implemented	The developed MILP optimization calculates the PV generation use and possible curtailments, but the results do not fully cover the objectives of the tools as the HVAC demand is not optimised in the previous steps
DL-EPOM_2	Partially	Calculation of batteries use
	implemented	The developed MILP optimization calculates the batteries use (charge and discharge powers and expected SoC), but the results do not fully cover the objectives of the tools as the HVAC demand is not optimised in the previous steps

Feature	Status	Notes		
DL-EPOM_3	Partially implemented	Calculation of EV batteries charge The developed MILP optimization calculates the EV batteries use (charge and discharge powers and expected SoC), but the results do not fully cover the objectives of the tools as the HVAC demand is not optimised in the previous steps		
DL-EPOM_4	Partially implemented	Calculation of energy exchanges with the grid The developed MILP optimization calculates th energy exchanges with the grid, but the result do not fully cover the objectives of the tools a the HVAC demand is not optimised in th previous steps		
DL-EPOM_5	Partially implemented	Calculation of energy exchanges between buildings through the grid The developed MILP optimization calculates the energy exchanges between buildings through the grid, but the results do not fully cover the objectives of the tools as the HVAC demand is not optimised in the previous steps		
DL-EPOM_6	Partially implemented	Calculation of manageable demands use The developed MILP optimization calculates the manageable demands use for every building but the results do not fully cover the objectives of the tools as the HVAC demand is not optimised in the previous steps		

For this first release of the energy tools, not all the DL-EPOM and BLEPOM functionalities have been fully developed as it is shown in the previous table. These partial developments are mainly caused by the fact that the necessary data from the demos have not been yet uploaded in the SYNERGY Platform so other data resources have been used and the optimization has been simplified and limited to the MILP optimization stage, leaving the GA optimization of the HVAC systems for the next release. For this release instead of using real data and predictions based on historical data from the demos, a series of CSV files have been created to collect the information needed to run the second step of the two tools, the MILP optimisation. These CSV files are hosted on the SYNERGY platform and are queried and used to launch both BL-EPOM and DL-EPOM. As a consequence, the queries and forecasts of the actual demo data in the SYNERGY platform have not been developed, this will be done in the coming months.

The development of the FMME has been based on test data taken from the sensors at ETRA I+D Headquarters. Data corresponding to 4 months has been uploaded in a duplicate manner to the SYNERGY Platform in order to emulate 2 buildings. Most features have been already implemented, while some of them are planned to be released in the upcoming months.


4.2.1 Application user interface

The login has been implemented by integrating with the SYNERGY Platform's Security, Authentication and Authorization mechanisms through Keycloak, an open source identity server implementing well-known authentication and authorization protocols.

Figure 12: Energy applications screen shot, login screen-I.

5	SY	N	E	R	G١	
	Sig	gn in to yo	ur accou	nt		

Username or email		
Password		
	Sign In	

Figure 13: Energy applications screen shot, login screen-II.

The Dashboard of Facility Management Monitoring Engine site provides a summary of the facilities under management of the facility manager, including a relation of the most relevant indicators over the last 30 days, as described in the Figure 14.

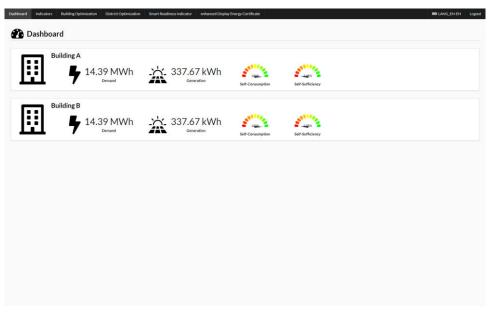


Figure 14: Energy applications screen shot, dashboard screen.

The indicators section of the application provides access to a number of visualizations over the different data retrieved from the facilities BMSs and deployed sensors and systems. Upon selection of a particular facility, the facility manager is able to navigate through the data.

The *Sensors* tab (see Figure 15) allows facility managers to navigate and drill-in on the raw data that is being sent by the sensors.

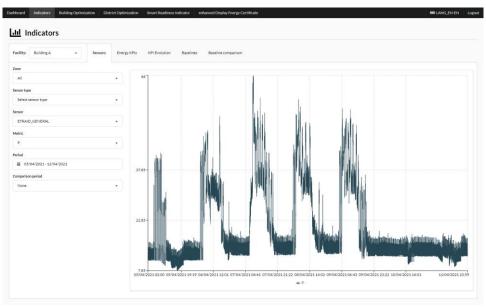


Figure 15: Energy applications screen shot, indicators screen -I.

The *Energy KPIs* tab (see Figure 16) displays relevant indicators about the facility as a whole or about specific zones. The *Distribution sub*-section (see Figure 17) will visualize how the main indicators evolve over time.

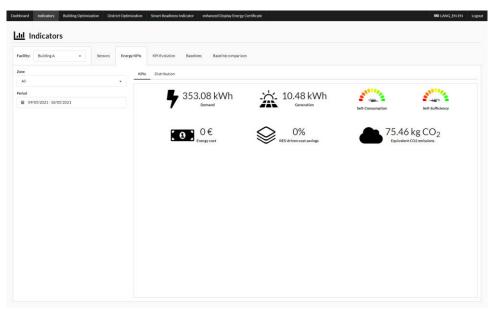


Figure 16: Energy applications screen shot, indicators screen -II.

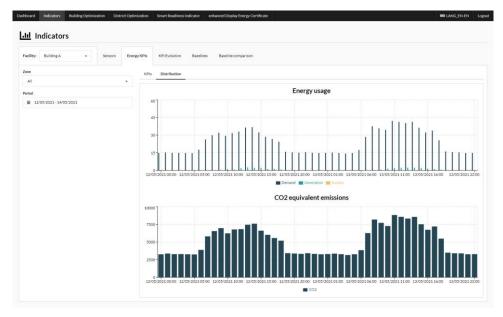


Figure 17: Energy applications screen shot, indicators screen -III.

The *Evolution* tab (see Figure 18) allows facility manager to track how the different KPIs evolve over time. This particular visualization is based on KPIs calculated on a daily basis.

Figure 18: Energy applications screen shot, indicators screen - IV.

The *Baselines* tab (see Figure 19) displays the usual energy-usage patterns of a facility. The usage patterns consist of quarterly demand and generation curves covering 24 hours for days of a certain typology (weekday/weekend of a particular month).

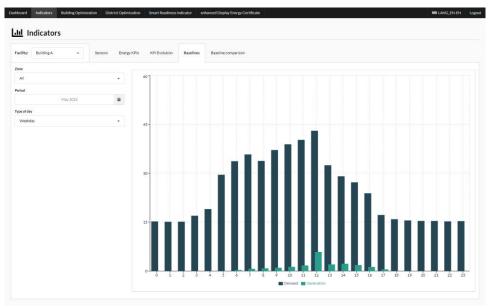


Figure 19: Energy applications screen shot, indicators screen -V.

The *Baseline comparison* tab (see Figure 20) has the objective of comparing the indicators of a particular facility/zone and date range against a given baseline, as a first insight for identification of anomalies in the energy-usage or assessment of energy efficiency.

Figure 20: Energy applications screen shot, indicators screen -VI.

For the HVAC Prediction Service, as an example, the one Air Handling Unit measurements (HVAC-PMS_1) is shown in Figure 21 and related example of autoencoder-decoder based Air Handling Unit malfunction detection (HVAC-PMS_4) is shown in Figure 22.

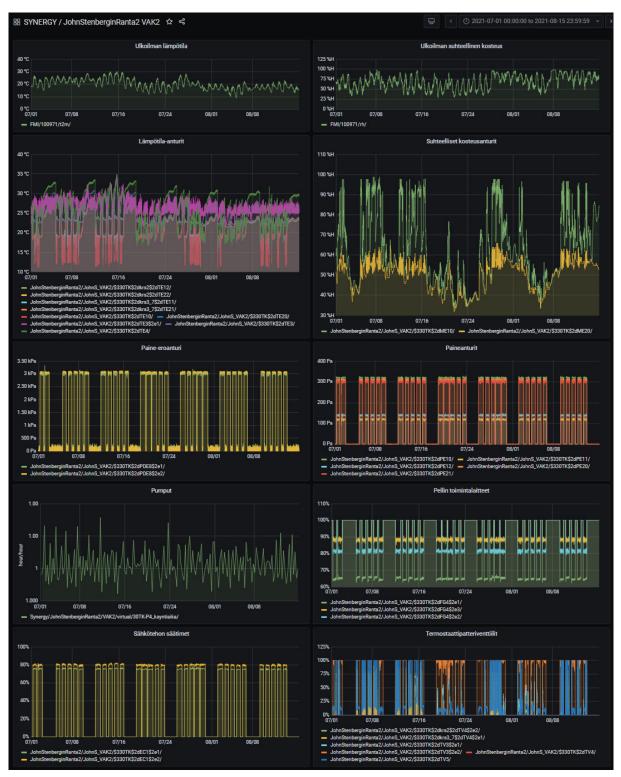


Figure 21: An Example of Air Handling Unit measurements (with test data).

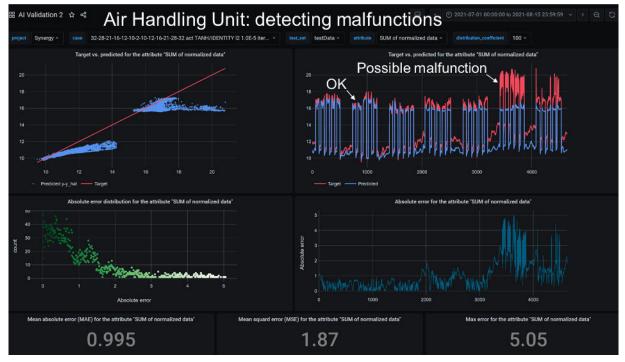


Figure 22: An Example of autoencoder-decoder based Air Handling Unit malfunction detection (with test data).

An example of 3D digital twin (HVAC-PMS_3) based visualising of detected malfunctions is shown in Figure 23. This digital twin has not yet been connected to the SYNERGY platform data, so test data from another building has been used.

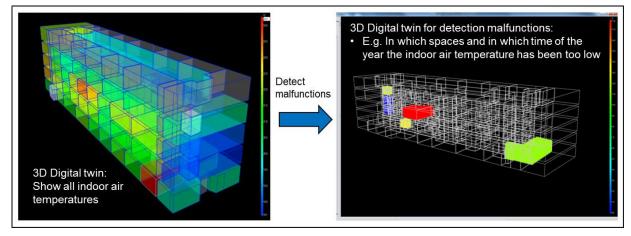


Figure 23: An example of 3D digital twin based visualising of detected malfunctions.

An example of different digital twin (HVAC-PMS_3) and machine learning (HVAC-PMS_4) boosted approaches for detecting energy system related malfunction detection are shown in Figure 24 and Figure 25, respectively.

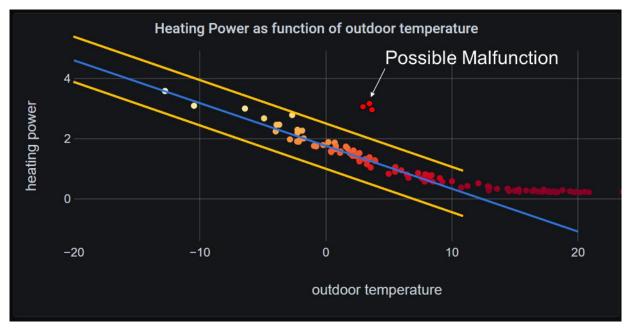


Figure 24: An example of heating system related malfunction detection.

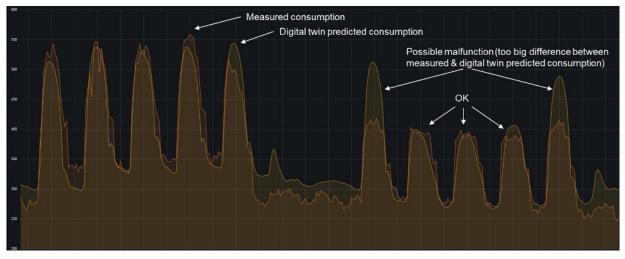


Figure 25: An example of building energy consumption related digital twin based malfunction detection.

The Caverion SmartView- integrated functionality (HVAC-PMS_2) for monitoring the technical performance of AHU and heating network functionalities has a variety of analytics that are used to detect HVAC performance discrepancies or discrepancy related occupant discomforts from the current operational conditions (see GUI in the Figure 26 & Figure 27).

G304 Exhaust Air Filter		2d 20h								
G302 Exhaust Air Filter	-	2d 7h								
Vantaa G102 Supply and	•	1d 17h	I							
Vantaa G101 Supply and	•	1d 11h								
G301 AHU Supply Air Pressure	•	1d 11h								

Figure 26: An example of different analytics performed in Caverion SmartView.

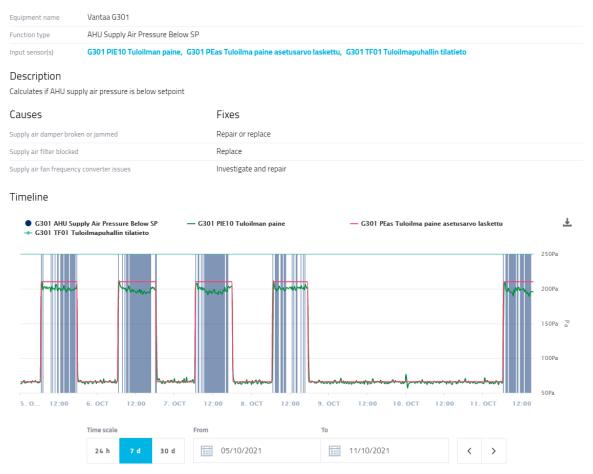


Figure 27: Example of more in-depth view of AHU supply air pressure analytic performed in Caverion SmartView.

4.3 Technology stack and implementation tools

4.3.1 The Facility Management Monitoring Engine

The Facility Management Monitoring Engine (FMME) related technology stacks and respective licenses are shown in the following table.

Table 9. The FMME related technology stacks and related version numbers and licenses.

Library	Version	License
meteor-base	1.4.0	MIT License
mobile-experience	1.1.0	MIT License
mongo	1.10.1	MIT License
static-html		MIT License
reactive-var	1.0.11	MIT License
tracker	1.2.0	MIT License
session	1.2.0	MIT License
accounts-password	1.7.0	MIT License
standard-minifier-js	2.6.0	MIT License
es5-shim	4.8.0	MIT License
ecmascript	0.15.0	MIT License
shell-server	0.5.0	MIT License
aldeed:collection2	3.0.0	MIT License
underscore	1.0.10	MIT License
react-meteor-data		MIT License
alanning:roles		MIT License
semantic:ui		MIT License
jquery		MIT License

flemay:less- autoprefixer		MIT License
matb33:collection- hooks		MIT License
mizzao:user-status		MIT License
etraid:accounts- openid		Proprietary
@babel/runtime	^7.12.5	MIT License
@popperjs/core	^2.6.0	MIT License
bcrypt	^5.0.0	MIT License
etra-forms	^1.0.4	Proprietary
etra-ui-components	^2.0.0	Proprietary
etraid_formats	^1.0.16	Proprietary
html-react-parser	^1.2.4	MIT License
i18next	^20.1.0	MIT License
i18next-browser- languagedetector	^6.1.0	MIT License
i18next-http-backend	^1.2.0	MIT License
jquery	^3.4.1	MIT License
lodash	^4.17.1 5	MIT License
luxon	^1.26.0	MIT License
meteor-node-stubs	^1.0.0	MIT License
moment-timezone	^0.5.33	MIT License
popper.js	^1.16.1	MIT License

prop-types	^15.7.2	MIT License
	15.7.2	
react	^16.14. 0	MIT License
react-dom	^16.14. 0	MIT License
react-i18next	^11.8.1 1	MIT License
react-icons	^4.2.0	MIT License
react-live-clock	^5.0.16	MIT License
react-moment	^1.1.1	MIT License
react-month-picker	^2.2.0	MIT License
react-router-dom	^5.2.0	MIT License
react-semantic-ui- datepickers	^2.13.0	MIT License
recharts	^2.0.9	MIT License
recompose	^0.30.0	MIT License
semantic-ui-react	^1.1.1	MIT License
simpl-schema	^1.10.2	MIT License
styled-components	^5.2.1	MIT License
pandas		BSD 3-Clause "New" or "Revised" License
sklearn		BSD 3-Clause "New" or "Revised" License
requests		Apache License 2.0
numpy		BSD 3-Clause "New" or "Revised" License

pymongo	Apache License 2.0
iso8601	MIT License

4.3.2 The HVAC Predictive Maintenance Service (HVAC-PMS)

The HVAC-PMS related technology stacks and respective licenses are shown in the following table.

Library	Version	License
Apache Tomcat [®] for Java Servlet	9.0.53	Apache 2.0 (<u>https://www.apache.org/licenses/LICENSE-2.0</u>)
PostgreSQL	14 RC 1	PostgreSQL is released under the PostgreSQL License, a liberal Open Source license, similar to the BSD or MIT licenses.
Deeplearning4j	1.0.0- M1.1	These libraries are completely open-source, Apache 2.0 under open governance at the Eclipse foundation. (<u>https://deeplearning4j.konduit.ai/</u>
TimescaleDB	1.1.1	Apache 2.0 <u>https://github.com/timescale/timescaledb/blob/1.1.x/LICENSE-APACHE</u>
Kubernetes	1.19.11	Apache 2.0 https://github.com/kubernetes/kubernetes/blob/master/LICENSE
Node.js	12.x	MIT/other https://github.com/nodejs/node/blob/v12.x/LICENSE

Table 10. The HVAC-PMS related technology stacks and related version numbers and licenses.

4.3.3 The Building-Level Energy Performance Optimisation Manager (BL-EPOM) and The District-level Energy Performance Optimisation Manager (DL-EPOM)

The main libraries used in Data Presentation, Business Logic and Data Access for this release are presented in the following table.

Table 11. Technology stack used in the Data Presentation, Business Logic and Data Access layers.

Library	Version	License
Pandas (for PYTHON)	1.3.3	Open source
Gurobipy (for PYTHON)	9.1.2	Mandatory

Library	Version	License
React (FrontEnd)	16.14.0	MIT License
React-dom	16.14.0	MIT License
React-bootstrap	16.14.0	MIT License
Listener (.NET Core)	3.1	Microsoft
ServiceBusClient	7.3.0	MIT License
ServiceBusMessage	7.3.0	MIT License
ServiceBusMessageBatch	7.3.0	MIT License
Axios API Connect	0.23.0	MIT License

4.4 API documentation

4.4.1 The Facility Management Monitoring Engine

The majority of the analytics required by the application have been configured as analytic workflows that are executed by the SYNERGY Platform. In order to access to the results of such analytics, different data retrieval queries have been configured, all of them exposing specific REST endpoints (as presented in the following table). Authentication mechanisms are implemented within the SYNERGY Platform in order to ensure that only authorized parties (components of the Facility Management and Monitoring Engine in this context) are granted access.

Data Retrieval Query	Туре	Implementer	Purpose
[DEV-WP7] _MERGED_ - Sensors	HTTP GET	SYNERGY Platform	Allocation of sensors per building
[DEV-WP7] _MERGED_ - Sensors ii	HTTP GET	SYNERGY Platform	Set of metrics available per sensor
[DEV-WP7] _MERGED_ - Hourly KPIs	HTTP GET	SYNERGY Platform	Aggregation of metrics per sensor on an hourly basis
[DEV-WP7] _MERGED_ - Energy data	HTTP GET	SYNERGY Platform	Raw sensor data from different buildings, merged in a single dataset

[DEV-WP7] _MERGED_ - Daily KPIs	HTTP GET	SYNERGY Platform	Aggregation of metrics per sensor on a daily basis
[DEV-WP7] _MERGED_ - Baselines	HTTP GET	SYNERGY Platform	Average profiles per building for baselining purposes

4.4.2 The HVAC Predictive Maintenance Service (HVAC-PMS)

Application related SYNERGY Platform data retrieval queries are show in the following table.

Table 13. Component rela	ated SYNFRGY Platform	data retrieval aueries.
Tubic 13. component ren	2100 21102101 1 101 20111	uutu retrievur gueries.

Data Retrieval Query	Туре	Implementer	Purpose
Get AHU fresh air	HTTP	SYNERGY	AHU fresh air temperature
temperature	GET	Platform	
Get AHU supply air	HTTP	SYNERGY	AHU supply air temperature
temperature	GET	Platform	
Get AHU return air	HTTP	SYNERGY	AHU return air temperature
temperature	GET	Platform	
Get AHU exhaust air	HTTP	SYNERGY	AHU exhaust air temperature
temperature	GET	Platform	
Get AHU fresh air	HTTP	SYNERGY	AHU fresh air relative humidity
relative humidity	GET	Platform	
Get AHU supply air	HTTP	SYNERGY	AHU supply air relative humidity
relative humidity	GET	Platform	
Get AHU return air	HTTP	SYNERGY	AHU return air relative humidity
relative humidity	GET	Platform	
Get AHU exhaust air	HTTP	SYNERGY	AHU exhaust air relative humidity
relative humidity	GET	Platform	
Get AHU supply air	HTTP	SYNERGY	AHU supply air temperature setpoint
temperature setpoint	GET	Platform	
GET AHU supply air	HTTP	SYNERGY	AHU supply air volume flow
volume flow	GET	Platform	
GET AHU return air	HTTP	SYNERGY	AHU return air volume flow
volume flow	GET	Platform	
GET AHU supply fan	HTTP	SYNERGY	AHU supply fan rotation speed
rotation speed	GET	Platform	
GET AHU exhaust fan	HTTP	SYNERGY	AHU exhaust fan rotation speed
rotation speed	GET	Platform	

Data Retrieval Query	Туре	Implementer	Purpose
GET AHU supply air filter	HTTP	SYNERGY	AHU supply air filter pressure difference
pressure difference	GET	Platform	
GET AHU return air filter	HTTP	SYNERGY	AHU return air filter pressure difference
pressure difference	GET	Platform	
GET AHU Heat recovery	HTTP	SYNERGY	AHU Heat recovery efficiency
efficiency	GET	Platform	
GET AHU electricity	HTTP	SYNERGY	AHU electricity consumption (optional)
consumption	GET	Platform	
GET AHU peak load	HTTP	SYNERGY	AHU peak load (optional)
	GET	Platform	
GET AHU heating	HTTP	SYNERGY	AHU heating consumption (optional)
consumption	GET	Platform	
GET AHU cooling	HTTP	SYNERGY	AHU cooling consumption (optional)
consumption	GET	Platform	
GET AHU exhaust air	HTTP	SYNERGY	AHU exhaust air CO2 (optional)
CO2	GET	Platform	
GET AHU affect area	HTTP	SYNERGY	AHU affect area related building envelope
related building	GET	Platform	pressure difference
envelope pressure			
difference			
GET AHU supply air	HTTP	SYNERGY	AHU supply air temperature after heat
temperature after heat	GET	Platform	recovery (optional)
recovery			
GET AHU supply air	HTTP	SYNERGY	AHU supply air temperature after heating coil
temperature after	GET	Platform	(optional)
heating coil			

4.4.3 The Building-Level Energy Performance Optimisation Manager (BL-EPOM) and The District-level Energy Performance Optimisation Manager (DL-EPOM)

Table 14. Component related SYNERGY Platform data retrieval queries.

Data Retrieval Query	Туре	Implementer	Purpose
Buildings and district data	HTTP GET	SYNERGY Platform	Gather CSVs emulating demo data
Optimization results	HTTP POST	SYNERGY Platform	CSV with optimization results

For the preliminary pilot to be released at late October, static data will be used due to the impossibility of having real data from SYNERGY platform as they have not been uploaded yet by the respective demo partners. From one hand, the SYNERGY Platform will be used to get data from it (through retrieval queries section). On the other hand, CIRCE OnPremises will be used both to store input files (.csv) to be used by the optimization algorithm and to store the results (output file .csv) generated after the mentioned execution.

4.5 Installation instructions

4.5.1 The Facility Management Monitoring Engine

All the components of the application have been packaged as a set of docker images. These docker images are available from a private repository at docker hub. This kind of packages facilitate the deployment in any platform supporting this technology (e.g. Kubernetes). Due to the nature of the software, being offered in the form of SaaS, no installation procedure is required by final users.

Image	Тад	Purpose
etraid/synergy_facilitymanagementui	0.0.15	Application main backend and frontend

4.5.2 The HVAC Predictive Maintenance Service (HVAC-PMS)

The web browser based monitoring of HVAC-PMS results does not need any installation.

4.5.3 The Building-Level Energy Performance Optimisation Manager (BL-EPOM) and The District-level Energy Performance Optimisation Manager (DL-EPOM)

The user interface (FrontEnd) which is being developed is packaged as a part of FMME application.

Both BL-EPOM and DL-EPOM tabs will be exported as modules of application, letting usability and ease of usage.

4.6 Assumptions and restrictions

4.6.1 The Facility Management Monitoring Engine

The architecture of the Facility Management and Monitoring Engine (see Figure 28) relies on the services provided by the SYNERGY Platform, specifically in the features related to data ingestion and data analytics.

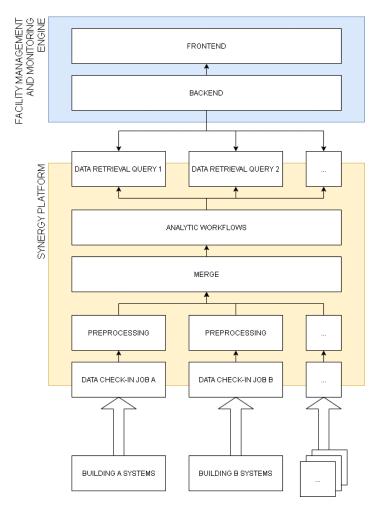


Figure 28: The architecture of the Facility Management and Monitoring Engine.

In order to be able to use the application, following configuration steps need to be taken for every new building that wishes to integrate with the application:

- Building managers are required to be registered as users of the SYNERGY Platform
- Building managers are required to configure the necessary data check-in jobs, so required datasets get accessible through the platform

Dataset	Content	Description
Raw sensor data	Device id Timestamp Active energy imported Active energy exported Active power	Merged dataset with all available measurements. Can be split in several datasets which will be merged within a single dataset using an analytic workflow

Reactive power	
Apparent power	
RMS current	
RMS voltage	

- Building managers are required to grant access to application manager to the required datasets, so those can be incorporated to the application workflows, by signing the appropriate contracts within the SYNERGY Platform
- Application manager configures the preprocessing step which ensures that existing datasets from any building manager are transformed from the SYNERGY CIM (followed in the SYNERGY Platform) to meet the structure required by the application.

Additionally, the following details need to be configured in the application for each building:

- Static information (name of building, location, type of use)
- Energy sensors contributing to building/zone KPIs calculations, namely:
 - Sensors/metrics that measure energy imported to the building/zone
 - o Sensors/metrics that measure energy exported from the building/zone
 - Sensors/metrics that measure energy generated within the building/zone

4.6.2 The HVAC Predictive Maintenance Service (HVAC-PMS)

HVAC-PMS relies on the data provided by the SYNERGY Platform. In addition, the users are required to be registered as users of the SYNERGY Platform and they should be able to do necessary data check-in jobs, so required datasets get accessible through the platform.

4.6.3 The Building-Level Energy Performance Optimisation Manager (BL-EPOM) and The District-level Energy Performance Optimisation Manager (DL-EPOM)

For this first release of the BL-EPOM and DLEPOM tools instead of using real data and predictions based on historical data from the demos gathered form the SYNERGY Platform, different CSV files have been created to collect, emulate and provide the information needed to run the second step of the two tools, the MILP optimisation. These CSV files are hosted on the SYNERGY platform and are queried and used to launch both BL-EPOM and DL-EPOM.

4.7 Licensing and access

4.7.1 The Facility Management Monitoring Engine

Component	Licensing details

Facility Management and Monitoring Engine	ETRA I+D is the owner of all intellectual property rights of this component. All rights are reserved.
---	---

A demo version of the application is accessible at³: <u>https://facilitymanagement.synergy-bigdata.eu/</u>

4.7.2 The HVAC Predictive Maintenance Service (HVAC-PMS)

VTT is the owner of all intellectual property rights of HVAC-PMS. All rights are reserved. The licensing can be granted according SYNERGY license agreement.

A demo version of the application will be accessible at⁴:

https://HVAC-predictivemaintenance.synergy-bigdata.eu

4.7.3 The Building-Level Energy Performance Optimisation Manager (BL-EPOM) and The District-level Energy Performance Optimisation Manager (DL-EPOM)

Component(s)	Licensing details
Building-Level Energy Performance Optimisation Manager (BL-EPOM) and District-level Energy Performance Optimisation Manager (DL-EPOM)	CIRCE Foundation is the owner of all intellectual property rights of this component. All rights are reserved.

A demo version of the application is accessible at⁵:

https://facilitymanagement.synergy-bigdata.eu/

4.8 Planned features for next release

4.8.1 The Facility Management Monitoring Engine

Work that is scheduled for the next release includes:

- Management of economical KPIs, by the integration and management of tariff definitions in the component (FMME_2)
- Finalization of the comparison features, both considering comparison against other buildings managed by the application (using baseline profiles) and also including the possibility to tag certain timestamps (e.g. When specific actions on building's equipment took place) and use them for comparison (FMME_3-4)

⁵ Demo credentials are available on request

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 872734.

³ Demo credentials are available on request

⁴ Demo credentials are available on request

- Revise the behaviour of the application with source datasets that update dynamically
- Take benefit of upcoming features of the SYNERGY Platform (e.g. query parameters on data retrieval queries for datasets that are results of analytic workflows) to enhance performance of the application

4.8.2 The HVAC Predictive Maintenance Service (HVAC-PMS)

It's planned that for the next release by M24, the focus will be put on the data collection and ML analytics (HVAC-PMS_1, HVAC-PMS_4). This will allow the start of the testing and validation of the application as a part of the WP8 activities, starting at M24. The results of testing and validation activities will be used to improve application functions towards M33, when the second phase of demonstration and validation will be started. During the period of M24-M33, the ML algorithms will be also improved by utilising and testing algorithm with various real datasets. The visualization feature will be improved (HVAC-PMS_3-5). The final version of application is to be released by M42.

4.8.3 The Building-Level Energy Performance Optimisation Manager (BL-EPOM) and The District-level Energy Performance Optimisation Manager (DL-EPOM)

For the next release (M24) all the features of the BL-EPOM and the DL-EPOM will be fully implemented and according to the data availability from the demos, basic data gathering and forecast algorithms will be implemented and if some data is still not available CSV files will be used. Along the first Demo run 1 (M23-M33) all the features of the BL-EPOM and the DL-EPOM and the data gathering and forecast algorithms will analysed and improved if needed.

4.9 Integration Plan

The integration plan for all modules is presented in the following table.

APPs/ modules	Integration Status for datasets, data flow and WP4 analytics
Facility management Monitoring Engine	The module is currently integrated with the platform, but only static data (i.e. CSV files). The focus in the following months is to further test this integration by using "live" datasets.
HVAC Predictive Maintenance Service	Data access and data sharing with SYNERGY platform is tested with test data. Module will be integrated with the platform when related data is available on the SYNERGY platform APIs.
BL-EPOM and DL- EPOM	In this first release the integration with the SYNERGY platform is limited to the extraction of CSV files to provide data and launch the BL-EPOM and DL-EPOM tools. In next stages and according to demo data availability and analytics to be developed in WP4 better data gathering process will be developed.

Table 15. Integration plan (for all modules) with SYNERGY platform.

5 Real Time Building Energy Performance and Smart Readiness Specification

5.1 Overview

As described in D7.1 the Facility Management Energy Analytics, Self-Consumption Optimization & Predictive Maintenance toolbox will integrate the two additional components dealing with the assessment of the buildings, the enhanced Display Energy Certificates (eDECs) and the Smart Readiness Indicator (SRI).

The eDECs module will deliver dynamic certificates of building energy performance in variant resolutions (e.g. annual, monthly, daily), for the building as a whole or per designated zone. It will utilize real-time field data of the building (consumption, production, IoT [Internet of Things] data etc.), static building data and benchmark values (drawn from the SYNERGY platform) and will dynamically calculate the energy performance indicators associated with the Display Energy Performance certificate as per the standard that will be adopted. The eDECs application will automatically retrieve as much input data as possible from the different datasets uploaded by the facility managers to the SYNERGY Platform (e.g. the time series of meter readings), thus minimizing the efforts required to introduce all required inputs to the benchmark models. In any case, facility managers will be able to state any missing piece of data (mainly static properties of the facilities under study) also directly to the eDECs application, by using the corresponding forms on the user interface. The data collected through the UI will also be stored in SYNERGY platform.

The SRI module will deliver the "Smart-Readiness" assessment of a building, by calculating the capability of the building to a) apply energy savings techniques b) respond to user needs and c) offer services to the grid. The tool will utilize static building data and benchmark values (drawn from the SYNERGY platform) and will calculate various indicators (disaggregated and building total) as per the SRI methodology, also described within D7.1.

5.2 Implemented functionalities

Within this section, the implemented functionalities of eDECs and SRI module are presented along with a walkthrough of the relevant applications via the screenshots presented in the following Table.

Feature	Status	Notes
eDEC_CE_1	Implemented	The feature (close to real-time calculation of building's energy performance operational rating) has been fully implemented and will be improved for the next release
eDEC_CE_2	Implemented	The feature (close to real-time calculation of CO_2 (Carbon Dioxide) emissions due to electricity consumption) has been fully implemented and will be improved for the next release.

Table 16. The status of implemented features.

Feature	Status	Notes
SRI_CE_1	Implemented	The feature (calculate the total Smart-readiness score of the building) has been fully implemented and will be improved for the next release.

5.2.1 Smart Readiness Indicator

The following figure shows the table of SRI performed assessments by the user.

Assessment	Modified	
Assessment 2	13/10/2021 17:12	٩
Assessment 1	13/10/2021 17:27	٩,

Figure 29: SRI entry page – a representation of the history of assessments.

When the users select a past assessment they can navigate through the inputs and outputs of the assessment by viewing the tabs below.

Inputs Outputs						
Assessment 2						
Services		General da	ata	Heating		
Seneral Inputs	~	Model type	A	Service	Functionality level	
leating	~	Building type	residential	Heat emission control	Level 1 - Central automatic control	
Domestic Hot Water	~	Building usage	single			
Cooling	~	Building state	original	Heat generator control (all except heat pumps)	Level 4 - Individual room control with communication and presence control	•
Controlled Ventilation	~	Country	Norway	Heat generator control (for heat pumps)	Level 0 - No automatic control	•
ighting	~			Storage and shifting of thermal energy	Level 0 - No automatic control	
Dynamic Building Envelope	~				LEVELO - THO ADDOMINEL CONTO OF	
llectricity	~			Report information regarding heating system performance	Level 1 - Central automatic control	•
flectric Vehicle Charging	~			Cancel Save		
Nonitaring & Control	~					

Figure 30: SRI inputs page – a representation of the heating inputs in a past assessment.

Energy savings on site				cts			R
	Flexibility for the grid and storage	Comfort	Convenience	Health & Wellbeing	Maintenance & fault prediction	Information to occupants	37%
36.72%	30.18%	41.52%	47.29%	29.33%	37.44%	54.92%	
25%	0%	16.67%	25%	50%	25%	33.33%	37%
66.67%	50%		40%		50%	100%	
62.5%	0%	42.86%	57.14%	66.67%	50%	100%	Export rep
33.33%		66.67%	66.67%	66.67%	50%	33.33%	
66.67%		100%	100%	0%			
20%	65.67%		40%		16.67%	22.22%	
33.33%		33.33%	25%	0%	50%	66.67%	
	-50%		33.33%			66.67%	
50%	66.67%	0%	42.86%	0%	50%	33.33%	
	23% 66.67% 62.3% 33.33% 66.67% 20% 33.33%	25% 0% 64.57% 50% 62.5% 0% 33.35% - 64.67% 64.67% 33.35% - 50% 64.67%	25% 0% 16.67% 64.57% 50% 42.65% 62.5% 0% 42.65% 33.35% 7.00% 66.7% 30.30% 64.67% 32.33% 33.35% 60.67% 32.33%	25% 0% 16.5% 25% 44.5% 50% 40% 40% 52.5% 0% 42.6% 57.4% 33.3% - 64.7% 64.7% 64.7% 50% 64.7% 64.7% 64.7% 64.7% 33.3% 64.7% 64.7% 64.7% 64.7% 33.3% 63.7% 63.3% 23.3% 53.3%	25N 0N 56.7% 25N 50N 64.57% 50N 42.6% 50N 64.7% 3235% 50N 64.67% 64.67% 64.67% 44.67% 64.67% 50% 64.67% 64.67% 3335% 64.67% 50% 64.67% 64.67% 3338 64.67% 50% 64.67% 64.67% 3339 64.67% 50% 64.67% 64.67% 3339 64.67% 64.67% 64.67% 64.67% 3339 64.67% 64.67% 64.67% 64.67% 3339 64.67% 64.67% 64.67% 64.67% 3339 64.67% 64.67% 64.67% 64.67% 3339 64.67% 64.67% 64.67% 64.67% 3339 64.67% 64.67% 64.67% 64.67% 3339 64.67% 64.67% 64.67% 64.67% 3339 64.67% 64.67% 64.67% 64.67% <	25A 0A 16.5% 27A 27A 25A 25A 64.57A 50A - - 50A - 50A 62.57A 0K - - 50A 50A 50A 32.37A - - - 64.5% 64.5% 64.7% 64.7% 44.57A 6.5% 0K - - 64.7% 50A - 32.37A 6.5% 0K 0K 0K -	25A 04 56A 25A 25A

Figure 31: SRI outputs page – a representation of the results in a past assessment.

When the users select to perform a new assessment, they are asked to provide inputs as per the following figures. Upon completion of the inputs, they can see the results of the assessment and export them in pdf format

Inputs Outputs		
Services	General Inputs	
General Inputs	Select model type	
Heating	A	
	Select building type	
Cooling	Residential	
	Select building usage	
	Single family house	
	Select building state	
	Renovated	
	Select country	
House Chargeng	Spain	
	Cancel Save	
Submit		

Figure 32: SRI inputs page – a representation of the general inputs' tab.

ervices	General data	Heating	
neral Inputs			
	Model type A	Service	Functionality level
ating	Building type residential	Heat emission control	Level 0 - No automatic control +
mestic Hot Water	Building usage single	Heat generator control (all except heat pumps)	Level 1 - Central automatic control
oling	Building state renovated		
ntrolled Ventilation	Country Spain	Heat generator control (for heat pumps)	Level 2 - Individual room control 🔹
hting namic Building Envelope		Storage and shifting of thermal energy	Level 0 - No automatic control +
ctricity		Report information regarding heating system performance	Level 0 - No automatic control 👻
ctric Vehicle Charging		Cancel Save	
initaring & Control			
Submit			

Figure 33: SRI inputs page – a representation of the heating inputs' tab.

				Imp	ects			
	Energy savings on site	Flexibility for the grid and Storage	Comfort	Convenience	Wellbeing and health	Maintenance & Fault Prediction	Information to occupants	A
Total	37.25%	NaN56	41.52%	42.67%	NaN%	NaNIS	44.76%	2 A 31%
Heating	37.5%		50%	0%			0%	31%
Domestic Hot Water	33.33%			20%			66.67%	
Cooling	50%		42.86%	42.86%			66.67%	Export report
Controlled Ventilation	33.33%		66.67%	66.67%			33.33%	
Lighting	66.67%		100%	100%				
Dynamic Building Envelope	60%			40%			66.67%	
Electricity	0%		0%	0%			33.33%	
Electric Vehicle Charging				100%			66.67%	
Monitoring & Control	25%		0%	28.57%			33.33%	

Figure 34: SRI outputs page – a representation of the results' tab of an assessment.

5.2.2 Enhanced Display Energy Certificates

The following figures show the inputs and outputs' tabs for the eDECs application as will be seen by the users of the application.

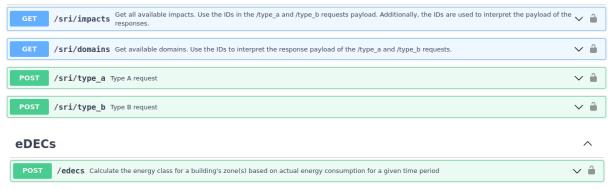
elect building type	Select climate zone	Define building zones	
General office	Central Europe	 Zone Floor area 	
		1 100	m ²

Figure 35: eDECs inputs page – a representation of the general inputs' tab.

shboard	Indicators	Building Optimizatio	n District Optimization	Smart Readiness Indicator	enhanced Display Energy Certificate			BB LANG_EN-EN	Log
≣.	enhanced	Display Er	nergy Certificat	te					
Inputs	Outputs								
	Select zon	e Zone 1		Select date a 03/10/20	21 From	0 00:00	To 🔘 10:00		
ENE	RGY PERFO	DRMANCE R	ATING		SELECTED	ZONE			
+ E.	C < 33 BENCH				D				
33	3 BENCH < E.C < 50	BENCH		1	579.64 kWh [[fidf:fc46b 72% Benchmark	ef60-045a-49a7-90bb-a85ddfa5	f2eb","index":0,"area"."100"]]		
+ 50	D BENCH + E.C + 7	BENCH			Export report				
75	5 BENCH < E.C < 10	00 BENCH							
10	DO BENCH < E.C < 1	141 BENCH							
14	41 BENCH < E.C < 1	182 BENCH							
18	82 BENCH < E.C < 2	227 BENCH							
22	27 BENCH « E.C « 2	273 BENCH			WEV CONS		TODA		
27	73 BENCH < E.C				KEY CONS	UMPTION INDICA			
						Zone consump	tion Benchmark consumpt	tion	
					Electricity	579.64 kWh	613.34 kWh		
					Carbon (CO ₂)	138.94 kg CO ₂	147.02 kg CO ₂		
					RES generation	209.98 kWh			

Figure 36: eDECs outputs page – a representation of the outputs' tab of the eDECs assessment where the user can select the time and zone they want to perform the assessment.

5.3 Technology stack and implementation tools


The technology that has been used for this purpose is the Go programming language for the web API service.

Library	Version	License
Echo	4.4.0	Open source

5.4 API documentation

The eDECs and SRI applications communicate with SYNERGY platform via the FMME application through selected APIs that have been created and are documented in Swagger as depicted in the following figures.

S	RI
-	

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 872734. Page 59

 $\overline{}$

5.5 Installation instructions

The eDECs and SRI applications are integrated within the FMME module, hence no specific installation instructions are provided here. For installation instruction of the modules please refer to section 4.5.1.

5.6 Assumptions and restrictions

eDECs and SRI rely on the data (basic information of the building, building energy consumption data) provided by the SYNERGY Platform. In addition, the users are required to be registered as users of the SYNERGY Platform and they should be able to do necessary data check-in jobs, so required datasets get accessible through the platform.

5.7 Licensing and access

VERD is the owner of all intellectual property rights of eDECs and SRI. All rights are reserved. The licensing can be granted according SYNERGY license agreement.

A demo version of the application is accessible at⁶: <u>https://facilitymanagement.synergy-bigdata.eu/</u>

5.8 Planned features for next release

No further features are planned for the next release of the applications.

Specific focus will be however given to improving specific elements of the developed applications as per below

- Within the eDECs application, a weather normalisation process is performed in order to calculate the baselines energy profiles of the building under assessment, as described in D7.2. Upon availability of close to real-time external temperature data of our demo sites, this process will be enhanced aiming at improving the accuracy of the calculated baselines
- Within the SRI application some of the inputs of the assessment will be prefilled based on data availability in the platform. Within the next months we will focus on improving this process aiming at raising the automation level of the assessment (offering the users the ability to perform their assessment in a much quicker way)

5.9 Integration Plan

As previously described, the eDECs and SRI applications will be integrated with SYNERGY platform via the FMME application, presented earlier in the chapter 4.

⁶ Demo credentials are available on request

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 872734.

6 Conclusions

This deliverable has presented the details of the developments towards the 1st release of Optimized Energy Performance Management Suite. More specifically, this report has provided details on the development of the SYNERGY Building/ District-level Analytics for Optimized Energy Performance Management, which comprises several energy applications: Advanced renovation support, Urban Energy Monitoring and Planning Support, Facility Management Energy Analytics, Self-Consumption Optimization & Predictive Maintenance and Real-time Building Energy Performance and Smart Readiness Certification.

This 1st release of software applications gives a solid ground for the upcoming development work of WP7, which will be reported in the next deliverable D7.3 Final Version of Optimized Energy Performance Management Suite, due to M42. Moreover this report put a ground to start testing and demonstration activities that will take place in scope of WP8, starting from M24.

7 References

